國立中央大學九十學年度轉學生入學試題

`	資電、	·地科學院	二年級 科目:	微積分	 共 /	頁	第	/

- 費. 填充題, 每題 10 分 (1 至 7 題爲填充題僅須寫出答案,不須計算過程、)
- Evaluate the given integrals.
 - (a) $\int_0^1 \sin^{-1} x dx =$ ____. (b) $\int_0^\infty t e^{-t/3} dt =$ ____.
- (a) If $\lim_{x\to\infty} (\sqrt{x^2 + \alpha x + 1} (x+1)) = c$, then $\alpha = \underline{\hspace{1cm}}$.
 - (b) If $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} f'(x) = 0$ and $\lim_{x \to 0^+} f''(x) = a$, then $\lim_{x \to 0^+} x f(t/\sqrt{x}) =$ _____
- If the function f is defined by $f(x,y) = -xye^{-(x^2+y^2)/2}$. 3

 - (a) The saddle point of f is _____. (b) The local minimum of f is _____.
- Perform the following differentiations.

 - (a) $\frac{d}{dx}[\pi^x x^{\pi}] =$ (b) $\frac{d}{dx}(\int_0^{\ln x} \frac{dt}{\sqrt{4+e^t}}) =$
- Evaluate the following integrals.
 - (a) $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2+y^2)^{3/2} dy dx = \underline{\hspace{1cm}}$
 - (b) $\int_C 2xy dx + (x^2 + y^2) dy = \underline{\hspace{1cm}},$
 - where C is the circular arc given by $x = \cos t$, $y = \sin t$ $(0 \le t \le \pi/2)$.
- (a) The interval of the convergence of the series $\sum_{k=1}^{\infty} \frac{(x-5)^k}{k^2}$ is _____.
 - (b) Let n be the degree of the Taylor polynomial centered at 1 required to approximate $f(x) = e^x, x \in [0, 2]$ to an accuracy of ± 0.001 , then $n = \underline{\hspace{1cm}}$.
- (a) A spherical balloon is expanding. If the radius is increasing at the rate of 2 inches per minute, at what rate is the volume increasing when the radius is 5 inches? _____.
 - (b) Let V be the dimensions of the rectangular package of largest volume subject to
 - the sum of the length and the girth(腰圍) cannot exceed 108 inches, then V =_____.
- 貳. 計算及證明題, 每題 10 分 (8 至 10 題爲計算及證明題,須詳述計算過程.)
- True or false? Justify your answers.
 - (a) If f(x) < g(x) then $\lim_{x \to c} f(x) < \lim_{x \to c} g(x)$.
 - (b) $\lim_{x\to c} [f(x)+g(x)]$ can exist even if $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ do not exist.
- Sketch the graph of the function $f(x) = \frac{3}{5}x^{5/3} 3x^{2/3}$.
- 10 (a) Let $f(x) = \begin{cases} x \sin(1/x), & x \neq 0 \\ 0 & x = 0 \end{cases}$ Show that f(x) is continuous at 0.
 - (b) Is f(x) differentiable at 0?

